Semi-homogeneous Sheaves, Fourier-mukai Transforms and Moduli of Stable Sheaves on Abelian Surfaces

نویسنده

  • SHINTAROU YANAGIDA
چکیده

This paper studies stable sheaves on abelian surfaces of Picard number one. Our main tools are semi-homogeneous sheaves and Fourier-Mukai transforms. We introduce the notion of semi-homogeneous presentation and investigate the behavior of stable sheaves under Fourier-Mukai transforms. As a consequence, an affirmative proof is given to the conjecture proposed by Mukai in the 1980s. This paper also includes an explicit description of the birational correspondence between the moduli spaces of stable sheaves and the Hilbert schemes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fourier-mukai Transform on Abelian Surfaces

where x = (x0, x1, x2), y = (y0, y1, y2) with xi, yi ∈ H (X,Z). For an object E ∈ D(X), we define the Mukai vector v(E) ∈ H(X,Z) of E as the Chern character of E. We also call an element v ∈ H(X,Z) Mukai vector, if v = v(E) for an object E ∈ D(X). We denote the coarse moduli space of S-equivalence classes of semi-stable sheaves E with v(E) = v by MH(v) and the open subscheme consisting of stabl...

متن کامل

Some Examples of Isomorphisms Induced by Fourier-mukai Functors

In order to investigate sheaves on abelian varieties, Mukai [Mu1] introduced a very powerful tool called Fourier-Mukai functor. As an application, Mukai ([Mu1], [Mu4]) computed some moduli spaces of stable sheaves on abelian varieties. Recently, Dekker [D] found some examples of isomorphisms of moduli spaces of sheaves induced by Fourier-Mukai functors. As an application, he proved that moduli ...

متن کامل

Moduli Spaces of Twisted Sheaves on a Projective Variety

Let X be a smooth projective variety over C. Let α := {αijk ∈ H(Ui ∩ Uj ∩ Uk,O X)} be a 2-cocycle representing a torsion class [α] ∈ H2(X,O X). An α-twisted sheaf E := {(Ei, φij)} is a collection of sheaves Ei on Ui and isomorphisms φij : Ei|Ui∩Uj → Ej|Ui∩Uj such that φii = idEi , φji = φ ij and φki ◦ φjk ◦ φij = αijk idEi . We assume that there is a locally free α-twisted sheaf, that is, α giv...

متن کامل

Rank One Bridgeland Stable Moduli Spaces on a Principally Polarized Abelian Surface

We compute moduli spaces of Bridgeland stable objects on an irreducible principally polarized complex abelian surface (T, `) corresponding to twisted ideal sheaves. We use Fourier-Mukai techniques to extend the ideas of Arcara and Bertram to express wall-crossings as Mukai flops and show that the moduli spaces are projective.

متن کامل

Twisted Stability and Fourier-mukai Transform

where xi ∈ H(X,Z) (resp. yi ∈ H(X,Z)) is the 2i-th component of x (resp. y) and x = x0 − x1 + x2. It is now called Mukai lattice. For a coherent sheaf E on X , we can attach an element of H(X,Z) called Mukai vector v(E) := ch(E) √ tdX , where ch(E) is the Chern character of E and tdX is the Todd class of X . For a Mukai vector v ∈ H(X,Z) and an ample divisor H , let MH(v) be the moduli space of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009